

cost-of-use analysis for : **LAUNDRY DETERGENT**

WATER USED TO DISPENSE PRODUCT:

US CHEMICAL Competitor 2 x 1.5 gal. 16 lb. case

0 gal. used 17.1 gal. used per lb.*

WATER USED PER CASE TO DISPENSE PRODUCT:

US CHEMICAL

Competitor

(A) = 0 gal. per case

(B) = 16 lb. x 17.1 = 273.6 gal.

MICROTECH VS. EXCESS GALLONS OF WATER TO DISPENSE SOLID:

(B) = Excess

273.6 = 273.6

COST TO HEAT WATER USED IN DISPENSING PRODUCT TO WASH WHEEL:

8.33 **Times 75** Equals 624.75 Divided 3413 0.183050103 Equals **Times** 0.21 Equals \$ 0.0384 Times 273.6 Equals \$ 10.51

Pounds = Weight of 1 gal. of water Degree rise (60 incoming raised to 135)

BTU's required per gallon BTU conversion factor to kWh

kWh

National average cost per kWh** Cost per gallon for 60 degree rise

Excess gallons consumed

(C) Excess cost for heating transport water

COST OF WATER USED TO TRANSPORT DETERGENT:

National average cost for water per 1000 CF (cubic feet) is: \$ 15.00 National average cost for sewage per 1000 CF (cubic feet) is: \$1.50 Conversion factor for CF to gallons is 0.13368

 $273.6 \times 0.13368 = 36.57$

36.57 / 1000 x 3 = cost of transport water

(D) $0.11 = \cos t$ of transport water

TOTAL ADDITIONAL COST TO DISPENSE A CASE OF SOLID DETERGENT:

Electric Water cost (C) (D)

\$ 10.51

Total additional cost

\$ 0.11

^{**} Actual electric, water and sewage rates vary. Use of the actual rate for each utility in your area to provide an accurate picture of the conditions in a case. Actual costs could be significantly higher...and the savings could be much greater.

^{*} All examples shown are based upon actual laboratory conditions of constant water pressure and constant water temperatures.